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We report on three episodes from a case study where upper secondary students 
numerically explore the definite integral in a Python environment. Our research 
questions concern how code can mediate and support students' mathematical 
thinking and what kind of sociomathematical norms emerge as students work 
together to reach a mutual understanding of a correct solution. The main findings 
of our investigation are as follows. 1) Students can actively use code as a mediator 
of their mathematical thinking, and code can even serve as a bridge that helps 
students to develop their mathematical thinking collaboratively. Further, code can 
help students to perceive mathematical notions as objects with various properties 
and to communicate about these properties, even in other semiotic systems than 
the mathematical language. 2) For the participating students, a common norm was 
that an acceptable solution is a sufficient condition for the correctness of the 
solution method although students were aware of a problem in their code, yet also 
other norms emerged. This demonstrates that learning mathematics with 
programming can have an effect on what kind of sociomathematical norms emerge 
in classroom. 
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1 Introduction 

In several European countries, including Sweden, programming has become a part of 
national school curricula in mathematics across all grade levels. The content areas in 
mathematics curriculum where programming is expected to be applied in Swedish 
schools include, e.g., algebra and problem solving. However, it has turned out that 
Swedish teachers face challenges in finding suitable ways to teach mathematics with 
programming. A survey of Kilhamn, Rolandsson, and Bråting (2021) indicates that 
the incorporation of programming into mathematics education has primarily resulted 
in teaching programming within a mathematical context. In other words, teaching 
with programming has not primarily focused on the learning of mathematics but 
merely on enhancing pupils' programming skills. One of the main reasons for that is 
that most mathematics teachers lack proper education in computer science and feel 
unsure and uncomfortable with programming (ibid., Johansson et al., 2023). There-
fore, they are quite dependent on teaching materials that typically focus on the basic 
skills of programming rather than on learning mathematics with programming. 

An examination of national curricula (e.g., Misfeldt et al., 2020) suggests that 
comparable findings could also emerge from other cultures. Indirect evidence of this 
phenomenon is present also in the literature review conducted by Forsström and 
Kaufmann (2018), where the positive impacts on student performance are frequently 
linked to general problem solving and logical reasoning rather than to any specific 
mathematical topics. Furthermore, geometry appears to be the content area where 
programming has been most frequently utilized (ibid.). 

The purpose of the present case study is to examine the ways in which program-
ming can support collaborative learning and students' communication in mathemat-
ics and students' mathematical thinking while they solve real mathematical tasks in 
small groups. Within a theoretical framework based on sociomathematical norms 
(Yackel & Cobb, 1996) and a multimodal languaging model (Joutsenlahti & Kulju, 
2017), we investigate how programming makes mathematical thinking visual and how 
code can be used to share mathematical ideas. Our study is based on a teaching ex-
periment conducted by the authors with a group of grade 11 students in the context of 
the definite integral.  

Below we first introduce our theoretical framework and then review some previous 
studies relevant to ours. Following this, we state our research questions and present 
our method and results. Finally, we conclude this article with a discussion on our find-
ings and conclusions. 
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2 Theoretical framework 

Yackel and Cobb (1996) base their theory of sociomathematical norms on the recog-
nized fact that mathematical learning involves both on active individual knowledge 
construction and acculturation into the mathematical practices of a society, such as a 
classroom of students and their teacher in a mathematics course. The aim of this the-
ory is to furnish tools for analyzing students' activity in learning situations. The core 
concept of the theory is that, in distinction to general social norms that sustain class-
room microcultures, there also are norms that are specific to the mathematical activ-
ities. These norms dictate, for instance, how students communicate with one another 
and with teachers about mathematical ideas and concepts. Likewise, what a group of 
students and their teacher deem an acceptable solution to typical a calculus exercise 
and how this differs from an acceptable solution to a typical exercise in geometry 
serves as another concrete example of these norms.  

Originally, Yackel and Cobb concentrated on analyzing mathematical discussions 
– for example, explanation, justification, and argumentation – but sociomathematical 
norms also steer learners' other mathematical activities such as participation in small-
group interactions (Yackel, Cobb, & Wood, 1991). It has also been noticed that socio-
mathematical norms and social norms are related to one another (Ozdemir Baki & 
Kilicoglu, 2023). 

The development of sociomathematical norms obviously depends on a teacher's 
actions, e.g., on a teacher's noticing skills (ibid.), but they are not solely defined by a 
teacher but also students actively participate in defining them. They are always local 
by nature; two student groups with the same teacher can develop quite different kind 
of sociomathematical norms (Güven & Dede, 2017). Moreover, these norms are not 
constant but they evolve and change over time. 

A learner's use of language in mathematics is inhetrently complex and multi-
modal, involving multiple modes, multiple presentations, and different types of writ-
ten and oral texts (e.g., Morgan, Craig, Schuette, & Wagner, 2014; Moschkovich, 
2021). The other theoretical perspective of this study, the multimodal languaging 
model of mathematical thinking, views the use of language and mathematical thinking 
as interplay between three semiotic systems or 'languages': the symbolic language of 
mathematics, natural language, and pictorial language (e.g., Joutsenlahti & Kulju, 
2017). According to this model, students are able to express their mathematical think-
ing by utilizing the symbols of mathematics, their mother tongue or another natural 
language, and visual representations such as pictures, tangible devices, and diagrams. 
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A code is is neither an expression of any natural language nor typical use of mathe-
matical symbols in school mathematics. However, it serves as an illustration of math-
ematical ideas. Therefore, it constitutes an element belonging to the third semiotic 
system in our theoretical model of languaging. 

In the context of mathematics, the term “languaging” refers to the process of mak-
ing meaning of and shaping knowledge about a mathematical idea through language, 
cf. Planas & Pimm (2024). In the process of multimodal languaging, a learner utilizes 
several semiotic systems, and communication between two or more individuals in-
volves transmitting and receiving information through these channels. A common 
aim of research using this framework is to describe and analyze how and to what ex-
tent individuals utilize these semiotic systems in their communication, yet the ulti-
mate goal of learning mathematics often entails that learners become proficient in 
communicating their mathematical thinking using the mathematical language and 
adhering to the sociomathematical norms of their community. 

3 Previous research 

Previous research indicates that upper secondary students often possess a superficial 
understanding about the definite integral concept (e.g., Rasslan & Tall, 2002; Attorps 
et al., 2010, 2013). While they may be able to recite the formal definition, many strug-
gle to write meaningfully about it. For example, numerous students mistakenly asso-
ciate it to the notion of area, leading to cognitive conflicts as the definite integral can 
also have negative values. Such prototypical images of a mathematical concept influ-
ence a learner's reasoning about the concept. Jones (2018) found that this is true spe-
cifically within the context of graphical representations of the definite integral. 

In their literature review, Forsström and Kaufmann (2018) explored the utiliza-
tion of programming in mathematics education. They categorized their findings ac-
cording to three themes: the motivation to learn mathematics, students' performance 
in mathematics, and the collaboration between students and the changed role of the 
teacher. Somewhat surprisingly, they also remark (p. 28): “No deeper discussions oc-
curred on the effect of collaboration, especially on students’ mathematics learning. 
Furthermore, even if studies discuss collaboration as an important factor in students’ 
learning, the learning is viewed in most studies as a change in individual knowledge 
instead of something that the group achieves as a group through collaboration”. It 
proved challenging to find more recent studies that address this gap. Hence our study, 
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distinctly falling into the third category, aims to offer a fresh perspective by exploring 
how code can facilitate students' collaborative learning and communication. 

A recent example of studies relevant to ours was conducted by Olsson and Gran-
berg (2022) who investigated teacher–student interaction and its role in supporting 
10–11 years old pupils’ creative mathematical reasoning as they solved a geometry 
problem using Scratch. Their results suggest that, if a teacher poses appropriate ques-
tions targeting pupils’ creative reasoning, it can help them to overcome some chal-
lenges related to learning mathematics through programming. Additionally, when pu-
pils possess adequate programming skills, programming has the potential to support 
their reasoning and to enable the teacher to give timely feedback (ibid).  

Olteanu (2022) explored the features of learners' reasoning and sensemaking as 
13–14-year-old pupils familiarized themselves with the exterior angle concept in order 
to construct different regular polygons with Scratch. One of her findings is that, when 
designing appropriate tasks for teaching mathematics with programming, it is crucial 
to consider how connections are established between different concepts from mathe-
matics and programming to promote sense-making and reasoning. In other words, 
her study contributes to understanding how to facilitate smoother transitions between 
the semiotic systems of the mathematical language and the programming language, 
although the theoretical framework of her study is not based on our perspective but 
rather on the notions of variation theory. 

It appears that, particularly in the Nordic context, there are very few, if any, studies 
reporting on upper secondary students learning mathematics through programming. 
As mentioned in the introduction, this is consistent with the findings of Kilhamn et 
al. (2021); the use of programming has focused merely on solving problems in pro-
gramming, not on solving mathematical problems with aid of programming. There-
fore, the present study may provide some novel insights into this issue. 

There are numerous studies examining the emergence of sociomathematical 
norms. Partanen and Kaasila (2015) offer a comprehensive summary of these studies, 
with their own investigation focusing on how these norms were negotiated during dis-
cussions among upper secondary students while investigating calculus in an inquiry-
based collaborative teaching experiment. They found, for example, that the develop-
ment of norms such as 'When investigating mathematics, one should approach the 
topic in a creative way' is possible but it takes time and it challenging because stu-
dents are used to solve mathematical tasks by following certain pre-given algorithms. 
Another example of the sociomathematical norms that Partanen and Kaasila (2015) 
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observed was 'Explicit justification in mathematics must be based on the properties 
of mathematical objects'. What is particularly intriguing about this norm is its swift 
evolution during the teaching experiment conducted by one of the researchers, de-
spite the participating students not being accustomed to justifying their mathematical 
claims in face-to-face interaction during lessons (ibid., p. 939). In other words, socio-
mathematical norms that can substantially enhance the quality of mathematical dis-
course, can evolve over a short period of time. There is no a priori reason to doubt that 
the introduction of programming in mathematics education could not have a compa-
rable effect. 

Recent studies on languaging have moved the focus “towards the communicative 
linguistic practices, with attention to social and interactional processes, rather than 
products of communication. This approach is contributing to revisiting mathematics 
teaching and learning as practices and processes in which language is a mediator and 
an agent of meaning” (Planas & Pimm, 2024, p. 135). A concrete example of the find-
ings is that students develop their understanding about mathematical expressions 
and concepts in various ways. For example, Joutsenlahti and Kulju (2017) studied us-
ing the multimodal languaging model how primary students interpret symbolic ex-
pressions containing a division and a subtraction. Already the task '24/6 – 3' was lan-
guaged in three fundamentally different ways by a small group of students. In other 
words, although teaching can lead to that a group of students learn to write symbolic 
expressions syntactically correctly, these expressions are not necessarily read or un-
derstood in an unambigous way if students are not encouraged (e.g., Joutsenlahti & 
Tossavainen, 2018) to reveal and test their interpretations by languaging their math-
ematical thinking.  

For a more thorough summary of recent studies on languaging and, more gener-
ally, language and communication in mathematics education, see, e.g., Morgan et al. 
(2014), Moschkovich (2021), and Planas and Pimm (2024). 

4 Design and research questions 

In this case study, we survey how code can mediate students' mathematical thinking 
and what kind of sociomathematical norms emerge when a group of upper secondary 
students numerically explores the definite integral using programming. Our study 
also possesses an ethnographic dimension as three of the authors are teachers of the 
participating students and know them well. This close relationship has greatly aided 
us in interpreting our data. 
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Regarding sociomathematical norms, we are particularly interested in those influ-
encing students' reasoning as they evaluate the correctness of their solutions to inte-
gration problems. Additionally, we aim to investigate students' languaging of their 
mathematical thinking and the role of code in languaging as students explore the def-
inite integral with a set of test functions. Our explicit research questions are as follows. 

1. How does code mediate students' mathematical thinking and influence their
languaging when studying the definite integral with programming?

2. What kind of sociomathematical norms emerge when students negotiate differ-
ent solution methods and establish a shared understanding of a correct solution
while studying the definite integral with programming?

5 Method 

Data for the present study were collected at an upper secondary school in Northern 
Sweden during one lesson. The participating students are enrolled in a mathemati-
cally emphasized study program and they had already encountered the concept of the 
definite integral. They possessed experience with programming in Python to that ex-
tent that they were able to read and edit code without any significant problems. Figure 
1 illustrates an example of the code used in this study. 

Figure 1.  An example of the code used in the study. 
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As Figure 1 shows, students were numerically investigating the integral ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 . 

The integrand is defined on line 11 and the bounds of integration along with the den-
sity of partition on line 22. 

Twelve students worked in four small groups with each one consisting of 2–4 stu-
dents. In addition to the provided code, they were given a list of test functions. Their 
task was to examine how the value of Riemann sum for different functions varies with 
the length of the sub-interval, thereby developing an understanding of the definite 
integral as a limit of Riemann sums. 

The activities of the small groups were video-recorded, capturing the screen view 
of the laptop used by the group and the voices of the group members, while not in-
cluding students' faces or physical actions. We conducted content analysis (e.g., Krip-
pendorff, 2018) to analyze the discussions of each group. By repeatedly watching the 
videos, we identified several interesting episodes which were transcribed for the anal-
yses. We deemed an episode interesting, e.g., when students encountered a mathe-
matical problem or another question they could not immediately interpret or solve 
correctly. Predictably, our data also encompass episodes where students' attention is 
drifted away from the mathematical problem or they became more engrossed in pro-
gramming than the mathematical tasks. These episodes are also noteworthy. How-
ever, for this article, we chose to concentrate on episodes demonstrating the code's 
potential to mediate mathematical thinking, and where we observed an influence of a 
sociomathematical norm that we deemed worthy of reporting. Following a thorough 
discussion, three episodes were selected. 

The content analysis of the selected episodes involved systematic reading of the 
transcripts, with a focus on uncovering the key inferences made by students. The in-
terpretation of the episodes was initially conducted by the first author and subse-
quently validated or adjusted through collaborative discussion. 

There are some limitations to the present study. Firstly, the absence of video re-
cordings capturing students' behaviour makes interpreting their activities somewhat 
challenging. Specifically, we were unable to gauge the level of attention each student 
devoted to the details of the code; instead, we could follow only the voices and the 
movements of the cursor. Additionally, the quality of laptops' microphones could have 
been better, as there were instances where background noise from other groups work-
ing in the same classroom made it difficult to discern what students were saying from 
the audio recordings. However, each episode was reviewed by multiple researchers 



LUMAT 

86 
 

who also observed the lesson, providing confidence in the accuracy of the transcrip-
tions. 

Another limitation pertains to the generalizability of our results. Obviously, a 
small sample is rarely representative; therefore, our study can only bring up examples 
of the studied phenomena and not answer to the question how usual or regular these 
phenomena are. On the other hand, there is no need to generalize our findings as so-
ciomathematical norms are per se local; in another classroom, an observer could find 
different kind of norms guiding students' activities. Consequently, our study like any 
other investigation into sociomathematical norms can only demonstrate the types of 
norms that exist but not say how typical they are in a larger population. 

Regarding ethical considerations, all participants were over fifteen years old which 
in Sweden grants them the autonomy to decide whether to participate in the study. 
All students participated voluntarily, and no personal or sensitive information about 
them was asked or recorded. However, since three of the researchers are also the stu-
dents' teachers, they recognize the students by their voices. The video recordings are 
stored according to the guidelines of the affiliations represented by the authors and 
will be not made available to third parts in order to preserve the participants' ano-
nymity. 

6 Results 

A general observation from the lesson was that the use of code appeared to assist stu-
dents in maintaining focus on the given task, despite a few occasional moments when 
they discussed unrelated topics. Students in small groups focused on discussing on 
what they saw on the screen of a laptop. Moreover, it was clear by students' discussion 
that they understood how the provided code was supposed to work and how it was 
related to the mathematical task. 

Next we report on three episodes in detail. Since sociomathematical norms and 
the mediating effect of code can be observed only in situ, we address both research 
questions within each episode and summarize our findings at the end of the section. 

6.1 Episode 1 

Here four students are first studying ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥1
0  for 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 with 𝑛𝑛 = 10 and the pro-

gram prints out the answer 0.4500.... In the beginning, one student codes and two 
students comment on what is happening on the screen. They notice immediately that 
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the answer is not exactly what they expected (0.5). One of them suggests that this 
depends on the roughness of the division of the interval and refers to the code by say-
ing that increasing the value of 𝑛𝑛 to one hundred should already give a better estimate 
for the correct solution. The coding student performs this change and runs the code. 
The given answer 0.49500... satisfies everyone in the group, so, they arrive at a shared 
view of the solution quicky and easily. Here the code plays a central role in mediating 
students' mathematical thinking as the change of the value of one parameter was a 
visible operation and everyone agreed on the correctness of the reasoning behind this 
operation.  

Next, students begin to examine 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥2with 𝑛𝑛 = 10, arriving at a negative 
value -1.381... One of the students observes then that something is wrong as he realizes 
that 𝑓𝑓 is a positive function and thereby the value of the Riemann sum should be pos-
itive, too. Quite naturally, they try to solve the observed mathematical problem by 
performing the same operation as previously: replacing 𝑛𝑛 = 10 first by 𝑛𝑛 = 100 and 
then by 𝑛𝑛 = 10 000. However, they still arrive at a negative answer.  

Now, an interesting turn follows. One of the students suggests that they should 
test their code with a very simple function 𝑓𝑓(𝑥𝑥) = 7. They do so. 

It should be exactly seven, independently how large [the value of 𝑛𝑛 is]. (Student 
A) 

They run the code. 

Yes. (Student A) 
 
Or... but why it becomes minus seven? (Student B)  
 
I think that it becomes minus...in the error... wait! (Student A) 

The cursor points to the parameter 𝑛𝑛 and there is silence for about twelve seconds. 
Then the cursor is moved onto line 14 where parameter ℎ is defined. 

Yes, it should be b minus a. (Student A) 

Both discussing students observe that they had inserted this line incorrectly: ℎ =
(𝑎𝑎 − 𝑏𝑏)/𝑛𝑛 instead of ℎ = (𝑏𝑏 − 𝑎𝑎)/𝑛𝑛. Then a student who has been silent so far says: 

Has it gone wrong also in the other [previous cases with other functions]?  
(Student C) 
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Student A agrees on that the code was erroneous also when they ran it for the pre-
vious functions. Now they run the corrected code both for 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 and 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥2  
and get the positive results. Seeing this convince everyone that they have arrived at a 
correct solution. 

Interestingly, students do not discuss in any way, why the incorrect code gave cor-
rectly a positive result in the case of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 although they now are aware of its in-
correctness, cf. the comment above made by Student C. Indeed, this episode ends as 
students notice that the corrected code gives positive values for the Riemann sums in 
the case of 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥2.  

The sociomathematical norm that steers students to accept their solution appears 
to be satisfied when the code gives a value which they can consider an acceptable ap-
proximation of the value of the definite integral they are studying. In this particular 
case, already the positivity of the value can play a decisive role. 

When it comes to languaging, already the beginning of the episode reveals that 
students can move from one semiotic system to another and back quite smoothly. 
Their communication happens mostly within the semiotic systems of pictorial lan-
guage (code) and natural language (Swedish). Students hardly mention any other 
mathematical term during the episode than values of the definite integrals and their 
signs, yet they can effectively communicate the essential mathematical ideas needed 
for discussing the task, the correctness of solution and, especially, for correcting the 
error in their code. This does not mean that students did not use also the semiotic 
system of mathematical language. On the contrary, they must have used that when 
they interpreted the task in the beginning of the episode. Further, when students no-
ticed the error in their code, it was possible only because they could read and compre-
hend that the values of  𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥2  are positive. So, a semiotic system can play an 
important role in the languaging process although its signs remained unspoken. 

A reason for smooth transitions between the semiotic systems appears to be that 
all of them can read both mathematical language and the code fluently and they do 
not have to interrupt their communication in natural language, for example, to ex-
plain one another on which line the division of the integration interval is adjusted.  

On the other hand, although students appear to master all three semiotic systems 
well enough to discuss the integration problem, they fail to observe that an erroneous 
code gave them a correct answer in the case of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥. This demonstrates two things. 
First, even advanced languaging skills does not always guarantee that mathematical 
thinking were correct. Second, sociomathematical norms guide students' 
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mathematical thinking quite powerfully. In this group, a consequence of the norm 'a 
seemingly correct answer guarantees the correctness of the solution method' was 
that students did not experience any need to revise their solution in spite of the fact 
that they became aware of an error in their code. 

6.2 Episode 2 

In this episode, two students are studying the definite integral of 𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑛𝑛(𝑥𝑥) /𝑥𝑥 and 
the programming environment gives the following message as the students run their 
code: “RuntimeWarning: invalid value encountered in double scalars. return 
sin(x)/x”. Obviously, this is due to the fact that the interval is [0, 1] and the given func-
tion is not defined at 𝑥𝑥 = 0. However, students do not observe this from the beginning. 

Wait... What? ... Invalid value? ... I get a message on an error. Although it is not 
an error, it prints out an incorrect thing [meaning: something else than ex-
pected] (Student D) 
 
What? (Student E) 
 
Yes, I get some 'RuntimeWarning'. What [does it mean]? (Student D) 

They run the code a couple of times and get the same message over and over again. 

Ask X [teacher's name]. (Student E) 
 
X, if one gets RuntimeWarning on the second [window where the code is run] 
(Student D) 

Teacher X comes and advices students to focus on the function 𝑓𝑓. Student D speaks 
about the present function, but Student E starts speaking about the previous case 
𝑓𝑓(𝑥𝑥) = 7 and what happened then for a large value of 𝑛𝑛. 

So, I put too many nines in the previous, for seven, so it will take a long time to 
load... (Student E) 

Student D says something indicating that it was so in the previous case and con-
tinues then 

How does [the curve of] 𝑠𝑠𝑠𝑠𝑛𝑛(𝑥𝑥) over 𝑥𝑥 look like? (Student D) 
  
It goes to... some value... It goes to zero when it grows. (Student E) 
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Both students start to think about this and it takes about 45 seconds.  

OK, it becomes like... becomes like... It becomes smaller and smaller. (Student 
D) 
 
Yes... It does not divide at zero. (Student E) 
 
No. So, at zero it is not defined. Is it so that it is not defined at zero and hence 
one must choose, say, zero point... zero point zero zero one. Does it make any 
difference? (Student D) 

Now Student D runs the code by calling minIntegral(0.00001, 1,10) and gets again 
the same runtime warning. For a couple of seconds she is surprised but notices then 
that she needs to adjust parameter 𝑥𝑥 on line 16. 

No, what if one changes [the value of 𝑥𝑥] over here. (Student D) 
 
Then it will work. (Student E) 
 
Yes. Hm, for that 𝑥𝑥 can't be... Yes, of course, it is clear. It is still from zero to 
one, but 𝑥𝑥 can't be zero... It is almost from zero to one... Then the sum is 0.593. 
(Student D) 

In this episode, Student D is seemingly more knowledgeable than Student E. When 
they meet a problem with the runtime warning and ask help from their teacher, Stu-
dent E gets lost and starts to talk about something that is not relevant for solving the 
problem with the runtime warnings. Student D listens to him but draws his attention 
back to the issue by referring to the present function in the code. Student E is still a 
bit lost as he considers how 𝑠𝑠𝑠𝑠𝑛𝑛(𝑥𝑥) /𝑥𝑥  decreases when 𝑥𝑥 grows, but then – without 
neither of them saying something – they start to see that the essential question is what 
happens when 𝑥𝑥 goes to zero. It appears that seeing the code is just what helps both 
of them to observe this.  

It is crucial to note that, while students engage in a discussion about the properties 
of the integrand 𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑛𝑛(𝑥𝑥) /𝑥𝑥, they remain aware of their principal objective: to 
compute ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥1

0 . We motivate this claim by the fact that students recognized the 

undefiniability of 𝑓𝑓(𝑥𝑥) only after having run the code multiple times. Thus, the code 
now plays a pivotal role in mediating students' mathematical thinking, even though 
they do not explicitly reference code in their discourse. However, both the code and 
the runtime warning are constantly visible to them, which makes it easier (compared 
to a situation where they would not see the code) for them to focus on searching for 
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the reason for the error by exploring different alternatives: a flaw in the integrand, 
interval, etc. And they succeed in finding the error's source and then go back to com-
puting an approximation of ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥1

0 . 

Another interesting observation is that there is a clear qualitative difference in stu-
dents D's and E's languaging. Student D uses the mathematical language more actively 
and coherently, whereas Student E builds more on the other two semantic systems, 
e.g., by using the natural language word 'it', referring to things which are not exactly 
correct in that context. However, with aid of the code, he can follow the reasoning of 
D and vice versa, especially, when they solve the issue related to the starting point of 
the interval. 

Also in this episode, we notice a similar sociomathematical norm as in the previous 
episode: students appear to be happy with their solution if the value of the Riemann 
sum given by the code is plausibly what they expected it to be. They do not start a 
discussion about the preciseness of the approximation but they focus more on con-
firming that the code really corresponds to the algorithm of computing Riemann sums 
in the case where the given function is not defined in the starting point of the interval. 

6.3 Episode 3 

In this episode, two students are studying ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥1
0  with 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥2. This episode is 

especially interesting because students' discussion happens mostly using very infor-
mal natural language and the code. However, both of them seem to be able to follow 
each other's mathematical thinking carefully and correctly. Another difference com-
pared to the previous episodes are that students work very tightly together and, in 
some places, where one of them starts a sentence, the other student may respond im-
mediately and continue the same sentence meaningfully, e.g., 

Now we are going to do something cool... (Student F) 
 
... the cool thing. (Student G) 
 
e–x [F moves the cursor to line 11] (Student F) 

Student G reacts immediately before F has written something: 

One can write it in two different ways. (Student G) 
 
Write it in the cool way. You can. (Student F) 
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The real cool way? (Student G) 
 
The extreme cool way. (Student F) 

Student G writes first “e^x^2” on the correct line and the discussion continues 
immediately: 

Can one use that...? (Student F) 
 
Don't know. Let's see... I don't believe that it works... (Student G) 
 
...then with stars. (Student F) 

Discussion continues intensively in this style and students observe quickly that 
they also need parenthesis. They test two different ways to write parenthesis running 
the code with 𝑛𝑛 = 100. The result is 99,0266... 

Does it give the same value? Bugger! Oh my god, it is the same value. But we 
should now have ten as that one is big [meaning the value of 𝑛𝑛] (Student F) 
 
Shall I reduce to ten? [replaces 𝑛𝑛 = 100 by 𝑛𝑛 = 10] (Student G) 

Students run the code with 𝑛𝑛 = 10 resulting now to the value 9,2247... 

It disturbs me that that one goes down. Now we shall change the function to 
seven [meaning 𝑓𝑓(𝑥𝑥) = 7] (Student F) 

Student G does not reply to the suggestion made by F but starts to analyze the code 
carefully. Student F accepts this and they together focus on the code as G moves the 
cursor through the code. 

Are you sure that you wrote the whole.. [meaning did F copy the original code 
correctly from the paper where the task was given] (Student G) 
 
Yes, look here...[a short pause] I agree, there is something strange here (Stu-
dent F) 

First students search for an error on line 14, but they notice that it is correct. Then 
F focuses on line 17, where they should have 'for i in range(n)' but they have 'for I in 
range(n)'. 

Wait, what happens if one changes that one?  [F changes i to I and runs the 
code] (Student F) 
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Why do you have the big i and the small i? (Student G) 
 
Because they have [meaning the code in the formulation of the task], that one 
is the big i and that one is the small i, aren't they? (Student F) 
 
Hm..[being somewhat unsure]  (Student G) 
 
What? Look, here is the big i...(Student F) 
 
Yeah [now agreeing] (Student G) 
 
... and here is the small i. (Student F) 

The episode continues so that students run their revised code with 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 and 
become confident that the code is now correct as they receive a plausible result. There-
after, they return to studying ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥1

0  with 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥2. 

Also this episode shows that students' mathematical communication can be effec-
tive although they actively avoid using the mathematical language in their speech. It 
takes only 2 minutes and 30 seconds from the beginning of the episode to the point 
where they test the revised code with  𝑓𝑓(𝑥𝑥) = 𝑥𝑥. In our view, a contributing factor for 
this effectivity was that they understood one another very well. Already the use of in-
formal expressions helped them to focus on the same details while solving the task.  

On the other hand, both of them focused carefully on the code. This became visible 
especially in those occasions where one of them started saying something or editing 
the code and the other student reacted to this immediately. So, code does not only 
mediate the mathematical thinking of one student to another student but it can also 
bridge their mathematical thinking together. As the previous episode, the code ap-
pears to have played a fundamental role in enhancing their mathematical communi-
cation. Students were actively engaged in the integration task and the visible code en-
abled them to concentrate on details of the task. They responded quickly and inten-
sively, e.g., to the anticipated properties of the outcome. Such communication would 
be considerably challenging without code mediating their mathematical ideas and in-
tentions. A prerequisite for this is that students appeared to have a good understand-
ing about the task which was given in the mathematical language. For example, alt-
hough they did not use mathematical terms in their speech, they noticed quickly both 
for (𝑥𝑥) = 𝑒𝑒𝑥𝑥2  and 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 whether the value of the definite integral was plausible or 
not. Also this contributed to that students could communicate their observations 
meaningfully using the other two semiotic systems than the mathematical language.  
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Not surprisingly, also these students adhered to the already-mentioned socio-
mathematical norm: if the answer is plausible, also the solution method is accepted 
being correct. 

6.4 Summary 

We present a synthesis of our findings from the three episodes discussed above, along 
with our answer to the research questions as follows.  

1) Across all episodes, it became evident that students effectively utilized code as 
a mediator of their mathematical thinking when explaining their mathematical ideas 
to one another. In Episode 3, we observed that code could serve as a bridge to facilitate 
collaborative development of mathematical thinking. Further, we noted that code 
helped students to perceive mathematical notions as objects or schemes with various 
properties, cf. Arnon et al. (2014).  For instance, students were able to conceptualize 
the algorithm for computing a Riemann sum as an independent entity and discuss its 
properties. An example of this is that students anticipated a positive value for the def-
inite integral already before running the code. In each episode, students engaged with 
all three semiotic systems of languaging, but there were notable differences among 
individuals and groups in the extent to which they relied on each semiotic system. In 
Episode 3, students exhibited effective and advanced mathematical thinking despite 
primarily communicating without using mathematical language.  

2) A common sociomathematical norm noticed in each episode was that an ac-
ceptable solution also justified the solution method, even though in some situations 
students were aware of problems related to their code. Another norm was that when 
students argued for their ideas they relied on the properties of mathematical objects, 
e.g., the positivity of a function or the decreasing value of the definite integral, cf. Par-
tanen and Kaasila (2015). Furthermore, we observed that the use of programming 
could also have an effect on the development of sociomathematical norms. For exam-
ple, students demonstrated persistence when they noticed that their code did not work 
correctly for a given function. Rather than giving up, they tested the code with another 
function. This happened both in Episode 1 and Episode 3. Our experience suggests 
that such behaviour is less common in a traditional learning situation with analogous 
problems. 
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7 Discussion 

In our experiment, students demonstrated the ability to smooth transitions between 
the semiotic systems of code, natural language, and the symbolic language used in the 
formulation of the task. Our particular task was to explore how code, a component of 
pictorial language, can mediate mathematical thinking. Our findings, especially, those 
related to Episodes 2 and 3, suggest that code as a component of pictorial language 
can play a dual role. On the one hand, code as a singular element kept students mind-
ful of their task, sparing them from repetitive discourse on the need to compute defi-
nite integrals. On the other hand, code as a detailed breakdown of steps necessary to 
solve the computational task not only aided students in detecting issues, such as when 
the integrand is not defined across the entire interval, but also enhanced their overall 
understanding. 

Moreover, it was delightful to observe that students were able to discuss the prop-
erties of the concept of the definite integral (e.g., the positivity of result) within the 
semiotic system of code. This indicates a high level of understanding of the concept, 
cf. Arnon et al. (2014). We interpret this achievement primarily as a result of students' 
proficiency in reading and understanding their code. Two indications of this are the 
facts that students were able to correct the small errors in their codes quite quickly 
and their adept discussion of code details. These findings align well with those made 
by Olsson and Granberg (2022) who remarked that sufficient programming skills are 
a prerequisite for programming to support pupils' mathematical reasoning. Using the 
terminology of the present paper, both their findings and ours suggest that code can 
be a mediator of mathematics thinking if the participants in a mathematical discus-
sion possess a strong command of the programming language's semiotic system. 

In all episodes, we observed also some other sociomathematical norms that re-
ported above; for example, the norm also noted by Partanen and Kaasila (2015): stu-
dents negotiate the correctness of their solution by referring to some properties of the 
mathematical object they are studying. In the first episode, it was the positivity of the 
value of Riemann sum, in the second and third episodes, it was the expectation that 
the size of the value of Riemann sum would match their anticipation.  

Another norm observed by us, which we have not found in the previous studies 
from the Nordic context, is that students were satisfied with their solution method if 
they were satisfied with the solution given by the method even when they knew that 
they had an error in their code. A case study cannot definitely explain how this norm 
developed but a plausible explanation is that this kind of reasoning is valid in most 
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cases; for instance, the probability of two random errors in computations offsetting 
each other is low. 

Based on our extensive experience with teaching mathematics, if a student is not 
sure about her solution method while solving a problem by hand, she quite rarely tests 
her method for another similar problem. Indeed, in a traditional mathematics lesson, 
students often stop working and wait for a teacher or another student to solve the 
problem if they encounter an obstacle themselves. For instance, consider how stu-
dents would have developed a shared understanding of their solution if the task had 
been to compute the Riemann sums by hand. Would the group in the first episode 
have tested their algorithm for the function 𝑓𝑓(𝑥𝑥) = 7 when they observed that it gives 
an impossible value for the function 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥2? We believe that in such a situation, 
students most often focus on finding an error in the computations related to the given 
task, and they only very rarely move on to testing their method on a different task. 
Now, in the first and third episodes, students encountered an error in their code, and, 
after discovering it, they went on correcting the code by first testing it with a very 
simple function and then re-running the revised code with another test functions. We 
interpret this as an evidence for that programming can steer what kind of norms 
emerge or alter existing norms, prompting students to become more active to make 
hypotheses and testing them, rather than adopting a passive role in a learning situa-
tion. 

An interesting question not addressed in this study is whether teaching mathe-
matics with programming significantly increases students' motivation to study math-
ematics. It is not self-evident that the use of digital technology in mathematics educa-
tion leads to increased motivation (e.g., Drijvers, 2018; Tossavainen & Faarinen, 
2019). However, the participating students were engaged in solving the given task 
with aid of code and they actively discussed their ideas. Therefore, we can conclude 
that, at the very least, the use of programming was not an hindrance to students' en-
gagement in our experiment.  

Furthermore, one of us conducted the same lecture as reported in this paper with 
another group of students who had more experience with programming. An interest-
ing observation from this session was that students' discussions were more mathe-
matically focused. Again, it appears that the level of students' programming skills has 
a significant effect on the extent to which the use of programming can enhance their 
learning in mathematics, as noted by Olsson and Granberg (2022). 
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Finally, in the third episode, the tendency to avoid the mathematical language 
while solving the task did not indicate any problems in mathematical thinking. On the 
contrary, the use of pictorial language only supported students' discussion on a strat-
egy for solving the problem with non-plausible values of the definite integral. In our 
opinion, this indicates that a natural language or a pictorial language are well-suited 
for communicating problem solving strategies and applying other metacognitive 
skills. 

8 Conclusions 

In conclusion, the above discussion on the sociomathematical norms observed in this 
study suggests that that programming can have a positive effect on the emergence and 
development of sociomathematical norms in classroom. Additionally, it can help stu-
dents to perceive mathematics as a more dynamic and evolving discipline than it is 
often seen, cf. Tossavainen et al. (2020). By a positive effect, we mean that students 
can become more active in formulating their own hypotheses and testing them, which 
is a fundamental problem-solving skill and an attitude associated with a dynamic 
mathematical mindset.  

However, it is important to note that the use of programming does not automati-
cally ensure that students pay a sufficient attention to their solution methods, even 
though code makes the method both visible and testable. We conclude that the norm 
that a correct solution justifies the solution method is deeply rooted in the realm of 
learning mathematics. 

On the other hand, while our findings demonstrate that the use of programming 
in teaching and learning mathematics can enhance collaborative working methods 
and facilitate the mediation of mathematical ideas, we conclude that programming 
does not necessarily make learning or teaching easier. Instead, it imposes high de-
mands on all participants' abilities to use both mathematical and programming lan-
guages. In particular, teachers may find their knowledge of programming languages 
insufficient, which can affects how fluently they can transition between mathematical 
and programming languages, cf. Olteanu (2022), Kilhamn et al. (2021), and Johans-
son et al. (2023). 

In line with findings of Olteanu (2022) and Olsson and Granberg (2022), we also 
conclude that a task that works well in a traditional teaching of mathematics may not 
necessarily translate well into a programming environment. A task may need to be 
rephrased to help learners to better understand the relationship between inherent 
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mathematical notions and their counterparts in a programming language. Therefore, 
it is essential to pay attention to developing new kinds of learning materials for teach-
ing mathematics with programming and not only invest on computers and access to 
programming environments if we want that this shift in teaching paradigms to be suc-
cessful, cf. Kilhamn et al. (2021) and Johansson et al. (2023). 
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