Relationship between affective-motivational constructs and heart rate

Authors

DOI:

https://doi.org/10.31129/LUMAT.12.1.2144

Keywords:

heart rate measurement, easiness, enjoyment, helpfulness, graph theory

Abstract

The following survey study uses a quantitative research design to investigate motivational and affective aspects of students (aged 14–17) in a mathematical workshop on graph theory. Motivational and affective aspects are related to heart rate measurement (using the digital medium of a pulse watch) in mathematical knowledge development processes in an empirical-oriented mathematics class. Interestingly, a link between constructs on motivational and affective aspects and a heart rate measurement is describable. This gives further impulses for investigation and could be used in the future to determine the teaching phases or tasks in which students are particularly motivated.

References

Bauersfeld, H. (1983). Subjektive Erfahrungsbereiche als Grundlage einer Interaktionstheorie des Mathematiklernens und -lehrens. In H. Bauersfeld, H. Bussmann & G. Krummheuer (eds.), Lernen und Lehren von Mathematik. Analysen zum Unterrichtshandeln II (pp. 1–57). Köln: Aulis-Verlag Deubner.

Bauersfeld, H. (1985). Ergebnisse und Probleme von Mikroanalysen mathematischen Unterrichts. In W. Dörfler & R. Fischer (eds.), Empirische Untersuchungen zum Lehren und Lernen von Mathematik (pp. 7–25). Hölder-Pichler-Tempsky.

Bauersfeld, H. (1988). Interaction, construction, and knowledge: Alternative perspectives for mathematics education. In D. A. Grouws, & T. J. Cooney (eds.), Perspectives on research on effective mathematics teaching (pp. 27–46). Lawrence Erlbaum.

Burscheid, J., & Struve, H. (2020). Mathematikdidaktik in Rekonstruktionen. Grundlegung von Unterrichtsinhalten. Springer. https://doi.org/10.1007/978-3-658-29452-6

Carroll, D., Turner, J. R., & Prasad, R. (1986). The effects of level of difficulty of mental arithmetic challenge on heart rate and oxygen consumption. International Journal of Psychophysiology, 4(3), 167–173. https://doi.org/10.1016/0167-8760(86)90012-7

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. L. Erlbaum Associates.

Coles, A. (2015). On enactivism and language: Towards a methodology for studying talk in mathematics classrooms. ZDM, 47, 235–246. https://doi.org/10.1007/s11858-014-0630-y

Dadaczynski, K., Schiemann, S. & Backhaus, O. (2017). Promoting physical activity in worksite settings: results of a German pilot study of the online intervention Healingo fit. BMC Public Health, 17(1), 696. https://doi.org/10.1186/s12889-017-4697-6

Eccles, J. S., Wigfield, A., & Schiefele, U. (1998). Motivation to succeed. In W. Damon & N. Eisenberg (eds.), Handbook of child psychology 5th ed., Vol. 3 (pp. 1017–1095). Wiley

Field, A. (2017). Discovering statistics using IBM SPSS statistics. SAGE Publications.

Gläser-Zikuda, M., & Mayring, P. (2003). A qualitative oriented approach to learning emotions at school. In P. Mayring & C. Rhoeneck (eds.), Learning Emotions: The Influence of Affective Factors on Classroom Learning (pp. 103–126). Peter Lang.

Goldin, G. A., Hannula, M. S., Heyd-Metzuyanim, E., Jansen, A., Kaasila, R., Lutovac, S., Di Martino, P., Morselli, F., Middleton, J. A., Pantziara, M., & Zhang, Q. (2016). Attitudes, Beliefs, Motivation and Identity in Mathematics Education. ICME-13 Topical Surveys. Springer, Cham. https://doi.org/10.1007/978-3-319-32811-9_1

Gopnik, A. (2003). The theory theory as an alternative to the innateness hypothesis. In L. M. Antony & N. Hornstein (eds.), Chomsky and His Critics (pp. 238–254). Blackwell Publishing Ltd. https://doi.org/10.1002/9780470690024.ch10

Hair, J. F., Jr., Black, W., Babin, B. J., & Anderson R. E. (2018). Multivariate Data Analysis. 8th Edition. Cengage Learning EMEA.

Healthwise Staff. (2020, September 23). Pulse Measurement. University of Michigan, Michigan Medicine. https://www.uofmhealth.org/health-library/hw233473#aa25322

Hefendehl-Hebeker, L. (2016). Mathematische Wissensbildung in Schule und Hochschule. In A. Hoppenbrock, R. Biehler, R. Hochmuth, & H.-G. Rück (eds.), Lehren und Lernen von Mathematik in der Studieneingangsphase (pp. 15–30). Springer. https://doi.org/10.1007/978-3-658-10261-6

Isoda, M., & Nakagoshi, A. (2000). A Case Study of Student Emotional Change Using Changing Heart Rate in Problem Posing and Solving Japanese Classrooms in Mathematics. In T. Nakahara, & M. Koyama (eds.), Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education, 3, 87–94.

Khamis, H. J., & Kepler, M. (2010). Sample size in multiple regression: 20+ 5k. In Journal of Applied Statistical Science, 17(4), 505–517.

Krummheuer, G. (1984). Zur unterrichtsmethodischen Dimension von Rahmungsprozessen. In JMD, 5(4), 285–306. https://doi.org/10.1007/BF03339250

Monkaresi, H., Bosch, N., Calvo, R., & D’Mello, S. (2017). Automated Detection of Engagement Using Video-Based Estimation of Facial Expressions and Heart Rate.” IEEE Transactions on Affective Computing, 8(1), 15–28. https://doi.org/10.1109/TAFFC.2016.2515084

Pape, H.-C., Kurtz, A., & Silbernagl, S. (2005). Physiologie. Thieme.

Patel, M., Lal, S. K. L., Kavanagh, D., & Rossiter, P. (2011). Applying neural network analysis on heart rate variability data to assess driver fatigue, Expert Systems with Applications, 38(6), 7235–7242. https://doi.org/10.1016/j.eswa.2010.12.028

Pielsticker, F. (2020). Mathematische Wissensentwicklungsprozesse von Schülerinnen und Schülern. Fallstudien zu empirisch-orientiertem Mathematikunterricht mit 3D-Druck. Springer. https://doi.org/10.1007/978-3-658-29949-1

Pielsticker, F., & Reifenrath, M. (2022). Zusammenhänge von motivationalen und affektiven Aspekten und digitaler Herzfrequenzmessung bei mathematischer Wissensentwicklung beschreiben – Eine quantitative Studie. In F. Dilling, F. Pielsticker, I. Witzke (eds.), Neue Perspektiven auf mathematische Lehr-Lernprozesse mit digitalen Medien (pp. 307–325). Springer. https://doi.org/10.1007/978-3-658-36764-0_14

Rennie, L. J. (1994). Measuring affective outcomes from a visit to a science education centre. Research in Science Education, 24(1), 261–269. https://doi.org/10.1007/BF02356352

Renninger, K. A. (2007). Interest and motivation in informal science learning. National Research Council.

Ridgers, N. D., McNarry, M. A., & Mackintosh, K. A. (2016). Feasibility and Effectiveness of Using Wearable Activity Trackers in Youth: A Systematic Review. JMIR Mhealth Uhealth, 4(4), 129.

Scherer, P., & Weigand, H.-G. (2017). Mathematikdidaktische Prinzipien, In M. Abshagen, B. Barzel, J. Kramer, T. Riecke-Baulecke, B. Rösken-Winter & C. Selter (eds.), Basiswissen Lehrerbildung: Mathematikunterrichten (pp. 28–42). Kallmeyer.

Scheibe, S., & Fortenbacher, A. (2019). Heart Rate Variability als Indikator für den emotionalen Zustand eines Lernenden. In S. Schulz (eds.), Proceedings of DELFI Workshops 2019. Gesellschaft für Informatik e.V.z. (p. 55). https://doi.org/10.18420/delfi2019-ws-107

Steinbring, H. (2015). Mathematical interaction shaped by communication, epistemological constraints and enactivism. ZDM, 47, 281–293. https://doi.org/10.1007/s11858-014-0629-4

Tiedemann, K. (2016). “Ich habe mir einfach die Rechenmaschine in meinem Kopf gebaut!” Zur Entwicklung fachsprachlicher Fähigkeiten bei Grundschulkindern. Beiträge zum Mathematikunterricht 2016 (pp. 991–994). WTM-Verlag.

University Aberystwyth. (2019, January 28). Aberystwyth researchers put activity trackers to the test. From https://www.aber.ac.uk/en/news/archive/2019/01/title-220012-en.html

Voigt, J. (1984). Die Kluft zwischen didaktischen Maximen und ihrer Verwirklichung im Mathematikunterricht. JMD, 84, 265–283.

Voigt, J. (1994). Entwicklung mathematischer Themen und Normen im Unterricht. In H. Maier & J. Voigt (eds.), Verstehen und Verständigung: Arbeiten zur interpretativen Unterrichtsforschung (pp. 77–111). Aulis.

Wang, J.B., Cadmus-Bertram, L.A., Natarajan L., White, M.M., Madanat, H., Nichols, J.F., Ayala, G.X., & Pierce, J.P. (2015). Wearable Sensor/Device (Fitbit One) and SMS Text-Messaging Prompts to Increase Physical Activity in Overweight and Obese Adults: A Randomized Controlled Trial. Telemed J E Health, 21(10), 782–792. https://doi.org/10.1089/tmj.2014.0176

Woithe, J. (2020). Designing, measuring and modelling the impact of the hands-on particle physics learning laboratory S'Cool LAB at CERN. Effects of student and laboratory characteristics on high-school students’ cognitive and affective outcomes (Report No. CERN-THESIS-2020-089) [Doctoral dissertation, Kaiserslautern University]. CERN Document Server. http://cds.cern.ch/record/2727453/?ln=de

Downloads

Published

2024-02-01

How to Cite

Pielsticker, F., & Reifenrath, M. (2024). Relationship between affective-motivational constructs and heart rate. LUMAT: International Journal on Math, Science and Technology Education, 12(1), 80–97. https://doi.org/10.31129/LUMAT.12.1.2144