STEM in chemistry

Cultivating problem-solving skills via blended problem-based learning Socratics module

Authors

DOI:

https://doi.org/10.31129/LUMAT.12.4.2445

Keywords:

three representation levels of chemistry, problem-solving, problem-based learning, blended problem-based learning, blended problem-based learning Socratics

Abstract

The development of students' problem-solving skills is vital for cultivating a future-ready workforce, particularly in the domains of Science, Technology, Engineering, and Mathematics (STEM) education. Despite its importance, many students face difficulties in connecting classroom learning to real-world contexts, a challenge that is particularly pronounced in chemistry due to the abstract nature of concepts such as the three levels of chemistry representation (macroscopic, microscopic, and symbolic). The integration of STEM principles into teaching approaches, such as the blended problem-based learning (BPBL) approach, which combines face-to-face and online learning, has shown promise in bridging this gap. By incorporating elements of STEM into the BPBL approach, this study explores how these disciplines can enhance problem-solving skills and facilitate deeper understanding. Specifically, this research investigates the effect of the BPBL_S Module—a module that integrates BPBL with the Socratic method—on students' problem-solving abilities in the three representation levels of chemistry concept. Employing a design and development research approach, the study involved 25 students and one teacher, selected through clustered random sampling. Data were collected through observations, student documents, and interviews, and were analysed thematically. The findings suggest that the BPBL_S Module significantly improves students' problem-solving skills by enabling them to apply STEM concepts to chemistry, thus enhancing their ability to justify solutions comprehensively across macroscopic, microscopic, and symbolic levels. This study underscores the potential of the BPBL_S Module as an effective STEM-based teaching aid to better prepare students for the problem-solving demands of the future workforce.

 

References

Abdullah, A. H., Abd Wahab, R., Mokhtar, M., Atan, N. A., Abd Halim, N. D., Surif, J., Mohd Zaid, N., Mohamad Ashari, Z., Ibrahim, N. H., Abdul Kohar, U. H., Hamzah, M. H., & Abd Rahman, S. N. S. (2022). Does SketchUp Make improve students’ visual-spatial skills? IEEE Access, 10, 13936–13950. https://doi.org/10.1109/ACCESS.2022.3147476

Ab Hakim, N. A., & Iksan, Z. (2018). Pengetahuan, kemahiran pelaksanaan dan sikap guru terhadap pembelajaran berasaskan masalah (PBM) dalam mata pelajaran Sains. In Seminar Antarabangsa Isu-Isu Pendidikan (ISPEN2018) (Vol. 5).

Abror, S., Rusijono, & Arianto, F. (2024). The effect of problem-based learning in a flipped classroom environment and learning motivation on learning independence and problem-solving skills. Educational Administration: Theory and Practice, 30(6), 1642–1657. https://doi.org/10.53555/kuey.v30i6.5565

Alias, N., Abdul Rahman, M. N., & Siraj, S. (2014). Homeschooling: Pendidikan Alternatif di Malaysia. Pearson: Kuala Lumpur.

Amin, A. K., Sudana, I. N. D., Setyosari, P., & Djatmika, E. T. (2021). The Effectiveness of Mobile Blended Problem Based Learning on Mathematical Problem Solving. International Journal of Interactive Mobile Technologies (iJIM), 15(01), 119. https://doi.org/10.3991/ijim.v15i01.17437

Atikah, N, Ibrahim, M.M., Jamaludin, K.A., Ong, E.T., Alias, N., Rosli, M. S., Yahaya, A. (2021). Enhancing Collaborative Learning Skills via Blended Problem-based Learning in Chemistry Learning. Central Asia and The Caucasus, 22(5), 1836–1854. doi: 10.37178/ca-c.22.1.183

Astriningrum, D., Susilo, H., Balqis, B., & Klaritasari, A. (2024). Enhancing scientific argumentation skill of biology students through problem-based learning (PBL) model assisted by lesson study. In AIP Conference Proceedings 3106(1), AIP Publishing.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Costa, A. M., Escaja, N., Fité, C., González, M., Madurga, S., & Fuguet, E. (2023). Problem-based learning in graduate and undergraduate chemistry courses: Face-to-face and online experiences. Journal of Chemical Education, 100(2), 597–606. https://doi.org/10.1021/acs.jchemed.2c00741

Chang, R. (2002). Chemistry seventh edition (7th ed.). OH, United States: McGraw Hill.

Chittleborough, G., (2014). The Development of Theoritical Frameworks for Understanding the Learning of Chemistry. In Devetak and S. A (Glazar (eds.), Learning with Understanding in the Chemistry Classroom (pp. 25–40). Melbourne: Deakin University.

Creswell, J. W. (2013). Qualitative Inquiry & Research Design. (L. Habib, K. Koscielak, B. Bauhaus, & M. Masson, Eds.) (Third. edition). California: Vicky Knight.

Dalim, S. F., Ishak, A. S., & Hamzah, L. M. (2022). Promoting students’ critical thinking through Socratic method: Views and challenges. Asian Journal of University Education (AJUE), 18(4), 1034–1039. https://doi.org/10.24191/ajue.v18i4.20012

Davut Sarıtaş, Hasan Özcan, & Agustín Adúriz–Bravo. (2021). Observation and Inference in Chemistry Teaching: a Model-Based Approach to the Integration of the Macro and Submicro Levels. Science & Education, 30(5), 1289–1314. https://doi.org/10.1007/s11191-021-00216-z

Dori, Y. J., & Hameiri, M. (2003). Multidimensional analysis system for quantitative chemistry problems: Symbol, macro, micro, and process aspects. Journal of Research in Science Teaching, 40(3), 278–302. https://doi.org/10.1002/tea.10077

Ertmer, P. A., dan Newby, T. J. (2013). Constructivism: Comparing Critical Features From an Instructional Design Perspective. International Society for Performance Improvement. 6(4), 50–72.

Fadzli, S., Yahaya, J., Deraman, A., Hamdan, A. R., Halim, L., Yahaya, N. Z., Zahari, M. S. M., & Rais, I. a. I. (2019). Environment based virtual interaction to enhance motivation of STEM education: The qualitative interview design and analysis. Education and Information Technologies, 25(2), 775–790. https://doi.org/10.1007/s10639-019-09996-y

Fibonacci, A., Wahid, A., Lathifa, U., Zammi, M., Wibowo, T., & Kusuma, H. H. (2021). Development of chemistry e-module flip pages based on chemistry triplet representation and unity of sciences for online learning. Journal of Physics: Conference Series, 1796, 012110. https://doi.org/10.1088/1742-6596/1796/1/012110

Gao, Y., & Liu, J. (2022). Hydrochloric Acid lonization in Water: Insights from Spectroscopic and Theoretical Studies. Physical Chemistry Chemical Physics, 24(6), 3452–3460. https://doi.org/10.1039/D1CP05798F

Ghufron, M. A., & Ermawati, S. (2018). The strengths and weaknesses of cooperative learning and problem-based learning in EFL writing class: Teachers and students’ perspectives. International Journal of Instruction, 11(4), 657–672. https://doi.org/10.12973/iji.2018.11441a

Gilbert, J. K., dan Treagust, D. F. (2009). Multiple Representations in Chemical Education. In J. K. Gilbert & D. Treagust (Eds.), Multiple Representation in Chemical Education (pp. 333–350). Dordrecht: Springer Netherlands.

Gkitzia, V., Salta, K., & Tzougraki, C. (2020). Students’ competence in translating between different types of chemical representations. Chemistry Education. Research and Practice, 21(1), 307–330. https://doi.org/10.1039/c8rp00301g

Haidet, K. K., Tate, J., Divirgilio-Thomas, D., Kolanowski, A., & Happ, M. B. (2009). Methods to improve reliability of video-recorded behavioral data. Research in Nursing & Health, 32(4), 465–474. https://doi.org/10.1002/nur.20334

Hassan, Z., & Ilyas, S. (2018). Workplace deviance and employee health among front line hotel employees: Psychological contract breach as a mediator. The International Journal of Human Resource Management, 29(10), 1591–1617. https://doi.org/10.1080/09585192.2017.1413098

Hirvonen, N., & Palmgren-Neuvonen, L. (2019). Cognitive authorities in health education classrooms: A nexus analysis on group-based learning tasks. Library & Information Science Research, 41(3), 100964. https://doi.org/10.1016/j.lisr.2019.100964

Hmelo-Silver, C. E. (2004). Problem-Based learning: What and how do students learn? Educational Psychology Review, 16(3), 235–266. https://doi.org/10.1023/b:edpr.0000034022.16470.f3

Hmelo, C. E., & Ferrari, M. (1997). The Problem-Based Learning Tutorial: Cultivating Higher Order Thinking Skills. Journal for the Education of the Gifted, 20(4), 401–422. https://doi.org/10.1177/016235329702000405

Ho, W. (2008). An exploration of peer collaboration and group problem solving process in a college problem-based learning classroom [Doctoral dissertation]. Retrieved from http://etda.libraries.psu.edu

Ibrahim, M. M. (2018). Peranan Guru dan Pelajar dalam Pembelajaran Berasaskan Masalah Mod Campuran. [Unpublished Doctoral's thesis]. Universiti Teknologi Malaysia, Skudai, Malaysia.

Ibrahim, M. M., & Jamaludin, K. A. (2019). The roles of teacher and students via blended problem-based learning: Improving students’ mastery of three representation levels of chemistry. Educatum Journal of Science, Mathematics, and Technology (EJSMT), 6(2), 9–21. https://doi.org/10.37134/ejsmt.vol6.2.2.2019

Ibrahim, M.M., Jamaludin, K.A., Rosli, M.S., Muhammad D. M. A., Taha, H., Borhan, M.T. (2022). Enhancing Self-Directed Learning Skills via Blended Problem-based Learning in Chemistry Learning. Central Asia and The Caucasus, 23(1), 1818-1835. Doi: 10.37178/ca-c.22.1.182

Johnstone, A. H. (2000). Teaching Of Chemistry - Logical Or Psychological? Chemistry Education Research and Practice, 1(1), 9–15. https://doi.org/10.1039/a9rp90001b

Lee, L. H., Surif, J., & Seng, C. H. (2014). Individual versus group argumentation: Student's performance in a Malaysian context. International Education Studies, 7(7), 109–124. http://dx.doi.org/10.5539/ies.v7n7p109

Li, W., & Sitthiworachart, J. (2024). A Systematic Literature Review of The Effectiveness of Problem-Based Learning in Blended Learning Environments. Educational Administration: Theory and Practice, 30(5), 9877–9892. https://doi.org/10.53555/kuey.v30i5.1183

Kim, N. J., Vicentini, C. R., & Belland, B. R. (2022). Influence of scaffolding on information literacy and argumentation skills in virtual field trips and problem-based learning for scientific problem-solving. International Journal of Science and Mathematics Education, 20(1), 215–236. https://doi.org/10.1007/s10763-020-10145-y

Kurniati, R. D., Andra, D., & Distrik, I. W. (2021). E-module development based on PBL integrated STEM assisted by social media to improve critical thinking skill: A preliminary study. Journal of Physics Conference Series, 1796(1), 012077. https://doi.org/10.1088/1742-6596/1796/1/012077

Merriam, S. B. (2009). Qualitative research : a guide to design and implementation. United Kingdom: Wiley.

Ministry of Education Malaysia. (2020). Analisis Keputusan SPM 2018 dan 2019 Bagi Subjek Kimia. Putrajaya: Lembaga Peperiksaan

Ministry of Education Malaysia. (2012). Pelan Pembangunan Pendidikan Malaysia. Putrajaya: Kementerian Pelajaran Malaysia.

Nasir, M. a. N., Yahaya, N., & Ibrahim, N. H. (2017c). Assessment of students’ mental models regarding hydrogen chloride molecule and its ionization properties among secondary school students. Man in India, 97(13), 41–49.

Noraini. (2010). Penyelidikan dalam Pendidikan. Kuala Lumpur: Mc Graw Hill.

OECD. (2023). OECD Economic Outlook, Volume 2023 Issue 1, No. 113. OECD Publishing. https://doi.org/10.1787/ce188438-en

Omar, S. Z., Arshad, M. Y. H., Rosli, M. S., & Shukor, N. A. (2018). Students’ understanding on transferring molecular formula to structural formula: the difficulties and solutions. Advanced Science Letters, 24(6), 4070–4073. https://doi.org/10.1166/asl.2018.11543

Piaget, J. (1976). Piaget’s theory (pp. 11–23). Berlin Heidelberg: Springer.

Pimdee, P., Ruenphongphun, P., & Sukkamart, A. (2022). Developing Thai undergraduate online digital citizenship skills (DCS) under the New Normal. Journal of Higher Education Theory and Practice, 22(9), 16–30. https://doi.org/10.33423/jhetp.v22i9.5358

Pinto, G., Castro-Acuña, C. M., López-Hernández, I., & Alcázar Montero, V. (2023). Learning difficulties in the interpretation of matter at the molecular level by university students—A case study: Dissolution of oxygen in water. Education Sciences, 13(8), 781. https://doi.org/10.3390/educsci13080781

Raju, M., Sivapurapu, L., Sasanka, M., & Thumma, T. (2023). Developing speaking competence of professional undergraduate students through socratic questing approach. Journal of Engineering Education Transformation, 36(3), 93–114. https://doi.org/10.16920/jeet/2023/v36i3/23102

Raman, Y., Surif, J., & Ibrahim, N. H. (2024). The Effect of Problem Based Learning Approach in Enhancing Problem Solving Skills in Chemistry Education: A Systematic Review. International Journal of Interactive Mobile Technologies (iJIM), 18(05), 91–111. https://doi.org/10.3991/ijim.v18i05.47929

Rannikmäe, M., Holbrook, J., Soobard, R. (2020). Social Constructivism—Jerome Bruner. In: Akpan, B., Kennedy, T.J. (eds) Science Education in Theory and Practice. Springer Texts in Education. Springer, Cham. https://doi.org/10.1007/978-3-030-43620-9_18

Richey, R.C. and Klein, J.D. (2005) Developmental research methods: Creating knowledge from instructional design and development practice. Journal of Computing in higher Education, 16, 23–38. http://dx.doi.org/10.1007/BF02961473

Savasci-Acikalin, F. (2019). How Middle School Students Represent Phase Change and Interpret Textbook Representations: a Comparison of Student and Textbook Representations. Research in Science Education, 51(6), 1651–1685. https://doi.org/10.1007/s11165-019-9834-z

Savec, V. F., Sajovic, I., & Grm, K. S. W. (2009). Action Research to Promote the Formation of Linkages by Chemistry Students Between the Macro, Submicro , and Symbolic Representational Levels. In J. K. Gilbert & D. Treagust (eds.), Multiple Representation in Chemical Education (pp.309–331). Dordrecht: Springer Netherlands

Shimizu, I., Nakazawa, H., Sato, Y., Wolfhagen, I. H. A. P., & Könings, K. D. (2019). Does blended problem-based learning make Asian medical students active learners?: a prospective comparative study. BMC Medical Education, 19(1). https://doi.org/10.1186/s12909-019-1575-1

Suhadi, S. M., Mohamed, H., Abdullah, Z., Zaid, N. M., Aris, B., & Sanmugam, M. (2021). Enhancing Student’s Higher Order Thinking Skills (HOTS) through the Socratic Method Approach with Technology. In IGI Global eBooks (pp. 1399–1412). https://doi.org/10.4018/978-1-7998-3022-1.ch073

Sun, X., Lin, G., Zhan, M., Zheng, Y., Ye, J., & Chen, D. (2024). Effects of a Microcomputer-Based Laboratory on the Triple-Representation of a Preservice Chemistry Teacher: An Eye-Tracking Design and Evidence. Journal of Chemical Education, 101(3), 858–867. https://doi.org/10.1021/acs.jchemed.3c00075

Szymkowiak, A., Melović, B., Dabić, M., Jeganathan, K., & Kundi, G. S. (2021). Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. Technology in Society, 65(65). https://doi.org/10.1016/j.techsoc.2021.101565

Talanquer, V. (2022). The Complexity of Reasoning about and with Chemical Representations. In JACS Au (pp. 2658–2669). https://doi.org/10.1021/jacsau.2c00498

Tolu, S., Yurdakul, O. V., Basaran, B., & Rezvani, A. (2018). English-language videos on YouTube as a source of information on self-administer subcutaneous anti-tumour necrosis factor agent injections. Rheumatology International, 38(7), 1285–1292. https://doi.org/10.1007/s00296-018-4047-8

Utami, A., Rochintaniawati, D., & Suwarma, I. R. (2020). Enhancement of STEM literacy on knowledge aspect after implementing science, technology, engineering and mathematics (STEM)-based instructional module. Journal of Physics Conference Series, 1521(4), 042048. https://doi.org/10.1088/1742-6596/1521/4/042048

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (Vol. 86). Harvard university press.

Wang, Y., & Zhou, Y. (2021). The Role of Water as a Universal Solvent in Chemical Reactions: An Experimental and Computational Study. Journal of Chemical Education, 98(5), 1536-1545. doi: 10.1021/acs.jchemed.0c01234

Witri, R. E., Hardeli, Kurniawati, D., & Yerimadesi. (2023). Integrated green chemistry problem-based learning module development to improve science process skills senior high school students on basic chemicals law. Jurnal Penelitian Pendidikan IPA, 9(8), 6188–6196. https://doi.org/10.29303/jppipa.v9i8.4380

Xie, J., & Correia, A. (2023). The effects of instructor participation in asynchronous online discussions on student performance: A systematic review. British Journal of Educational Technology, 55(1), 71–89. https://doi.org/10.1111/bjet.13350

Yee, M. H., Kong, K., Sidik, M. H. J., Kiong, T. T., & Mohamad, M. M. (2017). Implementasi pembelajaran berasaskan masalah dalam pendidikan teknikal dan vokasional: Persepsi pensyarah. Jurnal Pendidikan Teknologi dan Kejuruteraan, 12(1), 15–25.

Yun, H., Kim, S., & Han, E.-R. (2023). Latent profile analysis on the effectiveness of tutor performance: Influence on medical students’ engagement in blended problem-based learning. PLoS ONE, 18(10), e0292843. https://doi.org/10.1371/journal.pone.0292843

Zainal Abidin, M. Z., & Osman, K. (2017). Tahap pengetahuan, pemahaman, kemahiran dan pelaksaanaan guru sains terhadap kemahiran berfikir aras tinggi (KBAT). Journal of Advanced Research in Social and Behavioural Sciences, 8(1), 97–113.

Graphical abstract for the article.

Downloads

Published

2025-02-03

How to Cite

Ibrahim, M., & Mohd Badli, N. A. (2025). STEM in chemistry: Cultivating problem-solving skills via blended problem-based learning Socratics module. LUMAT: International Journal on Math, Science and Technology Education, 12(4), 4. https://doi.org/10.31129/LUMAT.12.4.2445