Comparing the integration of programming and computational thinking into Danish and Swedish elementary mathematics curriculum resources

Authors

DOI:

https://doi.org/10.31129/LUMAT.11.3.1940

Keywords:

computational thinking, curriculum resources, mathematics, programming

Abstract

Computational thinking has become part of the mathematics curriculum in several countries. This has led recently available teaching resources to explicitly integrate computational thinking (CT). In this paper, we investigate and compare how curriculum resources developed in Denmark — digital teaching modules — and Sweden — printed mathematics textbooks — have incorporated CT in mathematics for grades 1–6 (age 7–12). Specifically, we identify and compare the CT and mathematical concepts, actions, and combinations in tasks within these resources. Our analysis reveals that Danish tasks are oriented toward CT concepts related to data, actions related to programming, and mathematical concepts within statistics. This is different from Swedish tasks, which are oriented toward CT concepts related to instructions and commands, actions related to following stepwise procedures, and mathematical concepts related to patterns. Moreover, what is most dominant in one country is almost or completely absent in the other. We conclude the paper by contrasting these two approaches with existing knowledge on computational thinking in school mathematics.

References

Aguilar, M. S., & Castaneda, A. (2022). Out of the public eye: Researching political factors that influence the implementation of research knowledge as part of educational reforms and mathematics textbooks. Implementation and Replication Studies in Mathematics Education, 2(1), 107–129. https://doi.org/10.1163/26670127-bja10001

Benton, L., Hoyles, C., Kalas, I., & Noss, R. (2017). Bridging primary programming and mathematics: Some findings of design research in England. Digital Experiences in Mathematics Education, 3(2), 115–138. https://doi.org/10.1007/s40751-017-0028-x

Bocconi, S., Chioccariello, A., Kampylis, P., Wastiau, P., Engelhardt, K., Earp, J., Horvath, M., Malagoli, C., Cachia, R., Giannoutsou, N., & Punie, Y. (2022). Reviewing computational thinking in compulsory education: State of play and practices from computing education (I. dos Santos, R. Cachia, N. Giannoutsou, & Y. Punie (Eds.)). Publications Office of the European Union. https://doi.org/https://doi.org/10.2760/126955

Bråting, K., & Kilhamn, C. (2021). Exploring the intersection of algebraic and computational thinking. Mathematical Thinking and Learning, 23(2), 170–185. https://doi.org/10.1080/10986065.2020.1779012

Bråting, K., & Kilhamn, C. (2022). The integration of programming in Swedish school mathematics: Investigating elementary mathematics textbooks. Scandinavian Journal of Educational Research, 66(4), 594–609. http://doi.org/10.1080/00313831.2021.1897879

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research Association (pp. 1–25). American Educational Research Association.

Børne- og Undervisningsministeriet (2018). Handlingsplan for teknologi i undervisningen. https://www.uvm.dk/publikationer/folkeskolen/2018-handlingsplan-for-teknologi-i-undervisningen

Børne og Undervisningsministeriet (2019). Fælles mål for teknologiforståelse [Common goals for technology comprehension]. https://emu.dk/sites/default/files/2019-02/GSK.%20F%C3%A6lles%20M%C3%A5l.%20Tilg%C3%A6ngelig.%20Teknologiforst%C3%A5else.pdf

Børne- og Undervisningsministeriet (2021a). Didaktiske prototyper - Format og vejledning [Didactical prototypes – Format and guidelines]. https://tekforsøget.dk/wp-content/uploads/2021/06/Format-og-vejledning-til-didaktiske-prototyper-maj-2021.pdf

Børne- og Undervisningsministeriet (2021b). Forsøg med teknologiforståelse i folkeskolens obligatoriske undervisning: Slutevaluering [Experiment with technology comprehension in compulsory education: Final evaluation]. https://www.uvm.dk/-/media/filer/uvm/aktuelt/pdf21/okt/211004-slutevaluering-teknologoforstaaelse.pdf

Caeli, E. N., & Yadav, A. (2020). TechTrends, 64(1), 29–36. https://doi.org/10.1007/s11528-019-00410-5

Clements, D. H., & Sarama, J. (1997). Research on Logo: A decade of progress. Computers in the Schools, 14(1–2), 9–46. https://doi.org/10.1300/J025v14n01_02

Dahl, B., & Stedøy, I. M. (2004). A Nordic community: Ideas of education and democracy in mathematics. In I. M. Stedøy (Ed.), Mathematics Education - The Nordic Way (pp. 1–10). TAPIR.

Department for Education. (2013). National curriculum in England: Computing programmes of study. National Curriculum in England. https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study

diSessa, A. A., & Cobb, P. (2004). Ontological innovation and the role of theory in design experiments. Journal of the Learning Sciences, 13(1), 77–103. https://doi.org/10.1207/s15327809jls1301_4

Elicer, R., & Tamborg, A. L. (2022). Nature of the relations between programming and computational thinking and mathematics in Danish teaching resources. In U. T. Jankvist, R. Elicer, A. Clark-Wilson, H.-G. Weigand, & M. Thomsen (Eds.), Proceedings of the 15th International Conference on Technology in Mathematics Teaching (pp. 45–52). Aarhus University.

Gadanidis, G. (2017). Five affordances of computational thinking to support elementary mathematics education. Journal of Computers in Mathematics and Science Teaching, 36(2), 143–151.

Gould, R. (2021). Towards data scientific thinking. Teaching Statistics, 43(S1), S11–S22. https://doi.org/10.1111/test.12267

Heintz, F., Mannila, L., Nordén, L. Å., Parnes, P., & Regnell, B. (2017). Introducing programming and digital competence in Swedish K-9 education. In V. Diagené & A. Hellas (Eds.), International Conference on Informatics in Schools: Situation, Evolution, and Perspectives (pp. 117–128). Springer. https://doi.org/10.1007/978-3-319-71483-7_10

Helenius, O., & Misfeldt, M. (2021). Programmeringens väg in i skolan: en jämförelse mellan Danmark och Sverige. [Programming’s way into school – a comparison between Denmark and Sweden]. In K. Bråting, C. Kilhamn, & L. Rolandsson (Eds.), Programmering i skolmatematiken: möjligheter och utmaningar (pp. 39–56). Studentlitteratur.

Kohen-Vacs, D., Kynigos, C., & Milrad, M. (2020). On the integration of learning mathematics and programming. In S.-C. Kong, H. U. Hoppe, T.-C. Hsu, R.-H. Huang, B.-C. Kuo, R. K.-Y. Li, C.-K. Looi, M. Milrad, J.-L. Shih, K.-F. Sin, K.-S. Song, M. Specht, F. Sullivan, & J. Vahrenhold (Eds.), Proceedings of International Conference on Computational Thinking Education 2020 (pp. 53–56). The Education University of Hong Kong.

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2020). Computational thinking is more about thinking than computing. Journal for STEM Education Research, 3(1), 1–18. https://doi.org/10.1007/s41979-020-00030-2

Modeste, S. (2018). Relations between mathematics and computer science in the French secondary school: A developing curriculum. In Y. Shimizu & R. Vithal (Eds.), ICMI Study 24, School Mathematics Curriculum Reforms: Challenges, Changes and Opportunities (pp. 277–284). International Commission on Mathematical Instruction and University of Tsukuba.

Olofsson, A. D., Lindberg, J. O., Young Pedersen, A., Arstorp, A. T., Dalsgaard, C., Einum, E., & Willermark, S. (2021). Digital competence across boundaries - beyond a common Nordic model of the digitalisation of K-12 schools? Education Inquiry, 12(4), 317–328. https://doi.org/10.1080/20004508.2021.1976454

Palts, T., & Pedaste, M. (2020). A model for developing computational thinking skills. Informatics in Education, 19(1), 113–128. https://doi.org/10.15388/infedu.2020.06

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

Pérez, A. (2018). A framework for computational thinking dispositions in mathematics education. Journal for Research in Mathematics Education, 49(4), 424–461. https://doi.org/10.5951/jresematheduc.49.4.0424

Remillard, J. T. (2005). Examining key concepts in research on teachers’ use of mathematics curricula. Review of Educational Research, 75(2), 211–246. https://doi.org/10.3102/00346543075002211

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003

Swedish National Agency of Education (2018). Curriculum for the compulsory school, preschool class and school-age educare 2011. Elanders Sverige AB.

Tamborg, A. L., Elicer, R., Bråting, K., Geraniou, E., Jankvist, U.T., Misfeldt, M. (2023). The politics of computational thinking and programming in mathematics education: Comparing curricula and resources in England, Sweden, and Denmark. In B. Pepin, G. Gueudet, & J. Choppin (Eds.), Handbook of Digital Resources in Mathematics Education. Springer. https://doi.org/10.1007/978-3-030-95060-6_55-1

Wedman, L. (2020). The concept concept in mathematics education: A concept analysis. [Doctoral thesis, University of Gothenburg]. http://hdl.handle.net/2077/64096

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215

Cover image for the article.

Downloads

Additional Files

Published

2023-11-24

How to Cite

Elicer, R., Tamborg, A. L., Bråting, K., & Kilhamn, C. (2023). Comparing the integration of programming and computational thinking into Danish and Swedish elementary mathematics curriculum resources. LUMAT: International Journal on Math, Science and Technology Education, 11(3), 77–102. https://doi.org/10.31129/LUMAT.11.3.1940