Expanding the STEM integration model introducing the learning environment

Authors

DOI:

https://doi.org/10.31129/LUMAT.12.4.2379

Keywords:

STEM education, integration model, learning environment

Abstract

The increasing demand for a future-ready workforce, driven by rapid technological advancements, has positioned STEM (Science, Technology, Engineering, and Mathematics) education as a global priority. Despite its recognized importance, integrating STEM within traditionally monodisciplinary educational systems poses significant challenges. These include rigid curricula, subject compartmentalization, and institutional constraints that hinder interdisciplinary collaboration. This study aims to address these challenges by proposing an expansion of the existing STEM integration model developed by Seidelin and Larsen in 2021, which originally includes four approaches: content integration, overlapping methods integration, overlapping concepts integration, and context integration. The proposed expansion introduces a fifth element focused on the learning environment, recognizing the critical role that physical spaces, local contexts, and materials play in shaping integrated STEM education. The study draws on insights from the Danish LabSTEM+ project, where educators utilized what the project calls a laboratory model to explore the impact of the learning environment on STEM teaching. Methods included field observations, interviews, and the analysis of four case studies involving diverse educational contexts. The results demonstrate that the learning environment serves as a new way of integrating STEM. This addition of a fifth element to the integration model by Seidelin and Larsen offers a more comprehensive framework for STEM integration. The study concludes that the learning environment can be seen as a core component of developing integrated STEM teaching.

References

Artigue, M. & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM, 45(6), 797–810.

Bertel, L. B., Møller Jeppesen, M., & Lisborg, S. (2023). Problembaseret læring på tværs af uddannelseskæden: Hvordan kan vi styrke overgange i STEM gennem arbejdet med autentiske problemer? EMU Danmark Læringsportal. https://www.emu.dk/htx/teknikfag/overgange/problembaseret-laering-paa-tvaers-af-uddannelseskaeden?b=t432-t481

Brown, A.L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. Journal of the Learning Sciences, 2, 141–178.

Bybee, R.W. (2018). STEM Education Now More Than Ever. NSTA Press.

Carr, W. & Kemmis, S. (2005). Staying Critical. Educational Action Research, 13(3), 347–358.

Doğan, M. F., Gürbüz, R., Erdem, Z. Ç., & Şahin, S. (2019). Using Mathematical Modeling for İntegrating STEM Disciplines: A Theoretical Framework. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 10(3), 628–653.

Gardner, M., & Tillotson, J. W. (2019). Interpreting integrated STEM: Sustaining pedagogical innovation within a public middle school context. International Journal of Science and Mathematics Education, 17(7), 1283–1300.

Guzey, S. S., Moore, T. J., & Harwell, M. (2016). Building up STEM: An analysis of teacher-developed engineering design-based STEM integration curricular materials. Journal of Pre-College Engineering Education Research (J-PEER), 6(1), 2

Keiding, T. B. (2010). Rummet som didaktisk kategori. Uddannelsesnyt, 21(3), 4–9

Klausen, S.H. (2011). På tværs af fag: Fagligt samspil i undervisning, forskning og teamarbejde. Akademisk Forlag.

Larsen, H.H. & Svabo, C. (2002). Fra kursus til kompetenceudvikling på jobbet. Jurist- og Økonomforbundets Forlag.

Larsen, D. M., Kristensen, M. A., & Svabo, C. (2024). Expanding the horizons of mathematics in STEM: Diverse mathematical roles in STEM activities. In Anderson, J., Makar, K. (eds) The Contribution of Mathematics to School STEM Education: Current Understandings (pp. 85–102). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-2728-5_5

Larsen, D. M., Lindhardt, B. K., & Misfeldt, M. (2022). Undersøgende matematik. I S. Skov Fougt, J. Bundsgaard, T. Hanghøj, & M. Misfeldt (red.), Håndbog i Scenariedidaktik (s. 203–216). Aarhus Universitetsforlag

Nadelson, L. S., & Seifert, A. L. (2017). Integrated STEM defined: Contexts, challenges, and the future. The Journal of Educational Research: Teaching and Learning Integrated STEM using Evidence-Based Practices, 110(3), 221–223.

Nicolini, D. (2012). Practice theory, work, and organization: An introduction. Oxford University Press

Nielsen, K., Sillasen, M. K., & Daugbjerg, P. S. (2017). Engineering-svaret på naturfagenes udfordringer?. MONA, Matematik Og Naturfagsdidaktik, (2), 64–82.

Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The Role of Mathematics in interdisciplinary STEM education. ZDM, 1–16.

Michelsen, C., Petersen, M.R. & Ahrenkiel, L. (2017). Laboratoriemodellen – kompetenceudvikling med fokus på forandring af praksis. MONA – Matematik- Og Naturfagsdidaktik, (4), 39–55.

Møller, M. (2022). En STEM-didaktik er nødvendig hvis STEM skal være mere end et slogan. MONA – Matematik- Og Naturfagsdidaktik, (1), 59–64.

Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20–26.

Savery, J. R., & Duffy, T. M. (1995). Problem based learning: An instructional model and its constructivist framework. Educational technology, 35(5), 31–38.

Seidelin, L & Larsen D.M. (2021). STEM-integration – mere end en målsætning for grundskolen? Emu.

Sillasen, M. K., Daugbjerg, P. S., & Nielsen, K. (2017). Engineering-svaret på naturfagenes udfordringer?. MONA-Matematik-Og Naturfagsdidaktik, (2).

Svabo, C. & Shanks, M. (2014). Experience as Excursion: A Note towards a Metaphysics of Design Thinking. I P. Benz (red.), Experience Design: Concepts and Case Studies (s. 23–32). Bloomsbury Academic.

Svabo, C., Larsen, D. M., Borch, K. B., Svendsen, M. W. H., & Kristensen, M. L. A. (2024). STEM-didaktik: med fokus på matematik til grundskole, gymnasie o g dagtilbud. Syddansk universitetsforlag

Yin, R. K. (2009). Case study research: Design and methods (Vol. 5). sage.

Graphical abstract for the article.

Downloads

Additional Files

Published

2025-03-18

How to Cite

Svendsen, M. W. H., Larsen, D. M., & Svabo, C. (2025). Expanding the STEM integration model introducing the learning environment. LUMAT: International Journal on Math, Science and Technology Education, 12(4), 9. https://doi.org/10.31129/LUMAT.12.4.2379