Students’ Use of ChatGPT in an Algebra Class

A Case Study of Prompts and Attitudes

Authors

  • Mats Brasken Faculty of Education and Welfare Studies, Åbo Akademi University, Vaasa, Finland https://orcid.org/0000-0002-4610-1689
  • Kim-Erik Berts Faculty of Education and Welfare Studies, Åbo Akademi University, Vaasa, Finland
  • Solveig Wallin Upper-Secondary School of Vasa Övningsskola, Vaasa, Finland
  • Sofia Frilund Faculty of Technology and Seafaring, Novia University of Applied Sciences, Vaasa, Finland

DOI:

https://doi.org/10.31129/LUMAT.13.1.2877

Keywords:

Generative AI, K-12 mathematics education, students’ attitudes, algebra education

Abstract

This case study explored how upper-secondary students (N=14) used ChatGPT in a Finnish 15-week long algebra course and their attitudes toward its use. The study collected students’ ChatGPT prompts after a problem-solving session, in and out of class. Students’ spontaneous prompts were analysed using a combined Technology-Mediated Learning (TML) and Self-Regulated Learning (SRL) framework. While most students reported in a post-questionnaire that they found ChatGPT easy to use and helpful in solving math problems, their spontaneous use of ChatGPT remained limited. Moreover, very few student prompts showed signs of goal-setting, reflection, or exploratory engagement. Our findings suggest that without explicit scaffolding, students rely on generative AI for quick answers rather than as a tool for learning and problem-solving.

References

Acosta-Enriquez, B. G., Arbulú Pérez Vargas, C. G., Huamaní Jordan, O., Arbulú Ballesteros, M. A., & Paredes Morales, A. E. (2024). Exploring attitudes toward ChatGPT among college students: An empirical analysis of cognitive, affective, and behavioral components using path analysis. Computers and Education: Artificial Intelligence, 7, 100320. https://doi.org/10.1016/j.caeai.2024.100320 DOI: https://doi.org/10.1016/j.caeai.2024.100320

Alfredo, R., Echeverria, V., Jin, Y., Yan, L., Swiecki, Z., Gašević, D., & Martinez-Maldonado, R. (2024). Human-centred learning analytics and AI in education: A systematic literature review. Computers and Education: Artificial Intelligence, 6, 100215. https://doi.org/10.1016/j.caeai.2024.100215 DOI: https://doi.org/10.1016/j.caeai.2024.100215

Almarashdi, H. S., Jarrah, A. M., Abu Khurma, O., & Gningue, S. M. (2024). Unveiling the potential: A systematic review of ChatGPT in transforming mathematics teaching and learning. Eurasia Journal of Mathematics, Science and Technology Education, 20(12), em2555. https://doi.org/10.29333/ejmste/15739 DOI: https://doi.org/10.29333/ejmste/15739

Arrington, C., McVey, D., Mativo, J., & Pidaparti, R. M. (2025). Enhancing Teacher Effectiveness with AI based Prompt Engineering: A Proof of Concept. Journal of STEM Education: Innovations and Research, 26(2), 5–10. https://doi.org/10.63504/jstem.v26i2.2711 DOI: https://doi.org/10.63504/jstem.v26i2.2711

Ayres, P. (2006). Using subjective measures to detect variations of intrinsic cognitive load within problems. Learning and Instruction, 16(5), 389–400. https://doi.org/10.1016/j.learninstruc.2006.09.001 DOI: https://doi.org/10.1016/j.learninstruc.2006.09.001

Bai, Y., & Wang, S. (2025). Impact of generative AI interaction and output quality on university students’ learning outcomes: A technology-mediated and motivation-driven approach. Scientific Reports, 15(1), 24054. https://doi.org/10.1038/s41598-025-08697-6 DOI: https://doi.org/10.1038/s41598-025-08697-6

Bhandari, S., Liu, Y., Kwak, Y., & Pardos, Z. A. (2024). Evaluating the psychometric properties of ChatGPT-generated questions. Computers and Education: Artificial Intelligence, 7, 100284. https://doi.org/10.1016/j.caeai.2024.100284 DOI: https://doi.org/10.1016/j.caeai.2024.100284

Biton, Y., & Segal, R. (2025). Learning to Craft and Critically Evaluate Prompts: The Role of Generative AI (ChatGPT) in Enhancing Pre-service Mathematics Teachers’ TPACK and Problem-Posing Skills. International Journal of Education in Mathematics, Science and Technology, 13(1), 202–223. https://doi.org/10.46328/ijemst.4654 DOI: https://doi.org/10.46328/ijemst.4654

Bloom, B. (1984). The 2 sigma problem: The Search for Methods of Group Instruction as Effective as One-to-One Tutoring. Educational Researcher, 13(6), 4–16. DOI: https://doi.org/10.3102/0013189X013006004

Bowen, J. A. (2024). Teaching with AI. Johns Hopkins University Press. https://doi.org/10.56021/9781421449227 DOI: https://doi.org/10.56021/9781421449227

Bower, M. (2019). Technology‐mediated learning theory. British Journal of Educational Technology, 50(3), 1035–1048. https://doi.org/10.1111/bjet.12771 DOI: https://doi.org/10.1111/bjet.12771

Clark, T., Foster, L., Sloan, L., Bryman, A., & Clark, T. (2021). Bryman’s social research methods (Sixth edition). Oxford University Press.

Cooper, G. (2023). Examining Science Education in ChatGPT: An Exploratory Study of Generative Artificial Intelligence. Journal of Science Education and Technology, 32(3), 444–452. https://doi.org/10.1007/s10956-023-10039-y DOI: https://doi.org/10.1007/s10956-023-10039-y

Dasari, D., Hendriyanto, A., Sahara, S., Suryadi, D., Muhaimin, L. H., Chao, T., & Fitriana, L. (2024). ChatGPT in didactical tetrahedron, does it make an exception? A case study in mathematics teaching and learning. Frontiers in Education, 8, 1295413. https://doi.org/10.3389/feduc.2023.1295413 DOI: https://doi.org/10.3389/feduc.2023.1295413

Ellis, A. R., & Slade, E. (2023). A New Era of Learning: Considerations for ChatGPT as a Tool to Enhance Statistics and Data Science Education. Journal of Statistics and Data Science Education, 31(2), 128–133. https://doi.org/10.1080/26939169.2023.2223609 DOI: https://doi.org/10.1080/26939169.2023.2223609

Frieder, S., Pinchetti, L., and Griffiths, R.-R., Salvatori, T., Lukasiewicz, T., Petersen, P., & Berner, J. (2023). Mathematical Capabilities of ChatGPT. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, & S. Levine (Eds), Advances in Neural Information Processing Systems (Vol. 36, pp. 27699–27744). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2023/file/58168e8a92994655d6da3939e7cc0918-Paper-Datasets_and_Benchmarks.pdf

Gilmore, C., Göbel, S. M., & Inglis, M. (2018). An introduction to mathematical cognition. Routledge, Taylor & Francis Group. DOI: https://doi.org/10.4324/9781315684758

Goos, M., Galbraith, P., Renshaw, P., & Geiger, V. (2003). Perspectives on technology mediated learning in secondary school mathematics classrooms. The Journal of Mathematical Behavior, 22(1), 73–89. https://doi.org/10.1016/S0732-3123(03)00005-1 DOI: https://doi.org/10.1016/S0732-3123(03)00005-1

Govender, R. (2023). The impact of artificial intelligence and the future of ChatGPT for mathematics teaching and learning in schools and higher education. Pythagoras, 44(1). https://doi.org/10.4102/pythagoras.v44i1.787 DOI: https://doi.org/10.4102/pythagoras.v44i1.787

Guttupalli, S. (2023). Comparing Teacher-Written and AI-Generated Math Problem Solving Strategies for Elementary School Students: Implications for Classroom Learning. University of Massachusetts Amherst. https://doi.org/10.7275/8SGX-XJ08

Honigsberg, S., Watkowski, L., & Drechsler, A. (2025). Generative Artificial Intelligence in Higher Education: Mediating Learning for Literacy Development. Communications of the Association for Information Systems, 56, 1044–1076. https://doi.org/10.17705/1CAIS.05640 DOI: https://doi.org/10.17705/1CAIS.05640

Jankvist, U. T., Misfeldt, M., & Aguilar, M. S. (2019). What happens when CAS procedures are objectified?—The case of “solve” and “desolve”. Educational Studies in Mathematics, 101(1), 67–81. https://doi.org/10.1007/s10649-019-09888-5 DOI: https://doi.org/10.1007/s10649-019-09888-5

Kaya, D., & Yavuz, S. (2025). Can Generative AI and ChatGPT Break Human Supremacy in Mathematics and Reshape Competence in Cognitive-Demanding Problem-Solving Tasks? Journal of Intelligence, 13(4), 43. https://doi.org/10.3390/jintelligence13040043 DOI: https://doi.org/10.3390/jintelligence13040043

Korkmaz Guler, N., Dertli, Z. G., Boran, E., & Yildiz, B. (2024). An artificial intelligence application in mathematics education: Evaluating ChatGPT’s academic achievement in a mathematics exam. Pedagogical Research, 9(2), em0188. https://doi.org/10.29333/pr/14145 DOI: https://doi.org/10.29333/pr/14145

Lan, M., & Zhou, X. (2025). A qualitative systematic review on AI empowered self-regulated learning in higher education. Npj Science of Learning, 10(1), 21. https://doi.org/10.1038/s41539-025-00319-0 DOI: https://doi.org/10.1038/s41539-025-00319-0

Li, P.-H., Lee, H.-Y., Cheng, Y.-P., Starčič, A. I., & Huang, Y.-M. (2023). Solving the Self-regulated Learning Problem: Exploring the Performance of ChatGPT in Mathematics. In Y.-M. Huang & T. Rocha (Eds), Innovative Technologies and Learning (Vol. 14099, pp. 77–86). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-40113-8_8 DOI: https://doi.org/10.1007/978-3-031-40113-8_8

Liljedahl, P. (2016). Building Thinking Classrooms: Conditions for Problem-Solving. In P. Felmer, E. Pehkonen, & J. Kilpatrick (Eds), Posing and Solving Mathematical Problems (pp. 361–386). Springer International Publishing. https://doi.org/10.1007/978-3-319-28023-3_21 DOI: https://doi.org/10.1007/978-3-319-28023-3_21

NCC. (2019). National core curriculum for general upper secondary education 2019. Finnish National Agency for Education.

Ng, D. T. K., Tan, C. W., & Leung, J. K. L. (2024). Empowering student self‐regulated learning and science education through CHATGPT: A pioneering pilot study. British Journal of Educational Technology, 55(4), 1328–1353. https://doi.org/10.1111/bjet.13454 DOI: https://doi.org/10.1111/bjet.13454

Oakley, B., Johnston, M., Chen, K., Jung, E., & Sejnowski, T. (2025). The Memory Paradox: Why Our Brains Need Knowledge in an Age of AI. SSRN. https://doi.org/10.2139/ssrn.5250447 DOI: https://doi.org/10.2139/ssrn.5250447

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Balaji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M., Belgum, J., … Zoph, B. (2023). GPT-4 Technical Report (Version 6). arXiv. https://doi.org/10.48550/ARXIV.2303.08774

Panaoura, R. (2025). Teaching Mathematics in the Artificial Intelligence Era: Challenges and Concerns in Higher Education. Social Education Research, 242–249. https://doi.org/10.37256/ser.6220256730 DOI: https://doi.org/10.37256/ser.6220256730

Pavlova, N. H. (2024). Flipped dialogic learning method with ChatGPT: A case study. International Electronic Journal of Mathematics Education, 19(1), em0764. https://doi.org/10.29333/iejme/14025 DOI: https://doi.org/10.29333/iejme/14025

Pelton, T., & Pelton, L. F. (2023). Adapting ChatGPT to Support Teacher Education in Mathematics. In E. Langran, P. Christensen & J. Sanson (Eds.), Proceedings of Society for Information Technology & Teacher Education International Conference, Association for the Advancement of Computing in Education, 1662–1670.

Pepin, B., Buchholtz, N., & Salinas-Hernández, U. (2025). A Scoping Survey of ChatGPT in Mathematics Education. Digital Experiences in Mathematics Education, 11(1), 9–41. https://doi.org/10.1007/s40751-025-00172-1 DOI: https://doi.org/10.1007/s40751-025-00172-1

Persico, D., & Steffens, K. (2017). Self-Regulated Learning in Technology Enhanced Learning Environments. In E. Duval, M. Sharples, & R. Sutherland (Eds), Technology Enhanced Learning (pp. 115–126). Springer International Publishing. https://doi.org/10.1007/978-3-319-02600-8_11 DOI: https://doi.org/10.1007/978-3-319-02600-8_11

Prasse, D., Webb, M., Deschênes, M., Parent, S., Aeschlimann, F., Goda, Y., Yamada, M., & Raynault, A. (2024). Challenges in Promoting Self-Regulated Learning in Technology Supported Learning Environments: An Umbrella Review of Systematic Reviews and Meta-Analyses. Technology, Knowledge and Learning, 29(4), 1809–1830. https://doi.org/10.1007/s10758-024-09772-z DOI: https://doi.org/10.1007/s10758-024-09772-z

Uttich, L., Yee, K., & Giltner, E. (2025). The Essay Is Dead (And Other Thoughts About Assessing in the Era of AI): In P. W. Wachira, X. Liu, & S. Koc (Eds), Advances in Educational Marketing, Administration, and Leadership (pp. 145–178). IGI Global. https://doi.org/10.4018/979-8-3693-6351-5.ch006 DOI: https://doi.org/10.4018/979-8-3693-6351-5.ch006

Yeadon, W., Inyang, O.-O., Mizouri, A., Peach, A., & Testrow, C. P. (2023). The death of the short-form physics essay in the coming AI revolution. Physics Education, 58(3), 035027. https://doi.org/10.1088/1361-6552/acc5cf DOI: https://doi.org/10.1088/1361-6552/acc5cf

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0 DOI: https://doi.org/10.1186/s41239-019-0171-0

Zhao, S., Shen, Y., & Qi, Z. (2023). Research on ChatGPT-Driven Advanced Mathematics Course. Academic Journal of Mathematical Sciences, 4(5). https://doi.org/10.25236/AJMS.2023.040506 DOI: https://doi.org/10.25236/AJMS.2023.040506

Zimmerman, B. J. (2002). Becoming a Self-Regulated Learner: An Overview. Theory Into Practice, 41(2), 64–70. https://doi.org/10.1207/s15430421tip4102_2 DOI: https://doi.org/10.1207/s15430421tip4102_2

Downloads

Published

2025-11-25

How to Cite

Brasken, M., Berts, K.-E., Wallin, S., & Frilund, S. (2025). Students’ Use of ChatGPT in an Algebra Class: A Case Study of Prompts and Attitudes. LUMAT: International Journal on Math, Science and Technology Education, 13(1), 16. https://doi.org/10.31129/LUMAT.13.1.2877